SHEET-2(ENGINEERING CURVES II)
SWN | SHEET-2
Indus University
SHEET-2
2).A rolling circle of r = 27 mm radius is rolling outside a directing circle of R = 81 mm radius without slip, point P is at the contact point of two circles. Draw the locus of point P for one revolution of the rolling circle.
3).Draw an Archimedean spiral of 1.5 convolutions, the greatest and least radius being 60 mm and 20 mm respectively.
4). A circle of 25 mm radius is rolling on a straight line without slip. Point P is at the point of contact between generating circle and directing line. Draw the locus of point P and name the curve.
5). A stick, of length equal to the circumference of a semicircle, is initially tangent to the semicircle of the right side of it. This stick now rolls over the circumference of a semicircle without sliding till it becomes tangent on the left side of the semicircle. Draw the loci of two points of this stick. Name the curve. Take R = 42 mm.